
Sweeping Algorithms for Five-Point Stencils andBanded Matrices�Technical Memorandum ANL/MCS-TM-165, June 1992Man Kam KwongMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844Email: kwongmcs.anl.govAbstractWe record MATLAB experiments implementing the sweeping algo-rithms we proposed recently to solve �ve-point stencils arising from thediscretization of partial di�erential equations, notably the Ginzburg-Landau equations from the theory of superconductivity. Algorithmstested include two-direction, multistage, and partial sweeping.
�This work was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. 1

1 IntroductionIn [3] we proposed a method of sweeping for solving �ve-point stencils. Ourwork is motivated by our numerical study of the Ginzburg-Landau equationsthat arise in the theory of superconductivity. Nevertheless, the sweepingmethod is applicable to many generic �ve-point stencils derived from dis-cretizing other partial di�erential equations. Particularly promising is thefact that a substantial portion of each algorithm is parallelizable.In this article, we describe our experience in implementing the proposedmethods. Part of the work was done with the help of Shirin Bar-Sela, whowas a participant in the spring 1992 Student Research Participation Programat Argonne National Laboratory and who is currently an undergraduate atthe University of Houston, Downtown.At the preliminary stage of investigation, we chose MATLAB as ourenvironment for experimenting, because of its convenient language featuresrendering program development simpler than in Fortran or C. After beingsuccessfully tested, a program will be translated into Fortran to give a fasterversion. Full exploitation of parallelism will then be the next step.In Section 2, we give the de�nition of a regular and a Dirichlet �ve-pointstencil, together with a list of our test problems. In Section 3, we describethe MATLAB environment in which the experiments were carried out. Wehave been testing a beta-version of the MATLAB 4 package. In the samesection we describe some basic subroutines on which the sweeping programsare built. Section 4 covers one-stage, two-direction sweeping. Section 5 isdevoted to a two-stage algorithm. In Section 6, we apply partial sweepingto a periodic Helmholtz operator. Section 7 discusses how the method ofcontinuation can be used to invert stencils that are close to a stencil whoseinverse has already been computed. Finally, in Section 8, we brie
y discussbanded matrix inversion. We leave this discussion until last because the taskof inverting such a matrix is conceptually the same of inverting a �ve-pointstencil, and indeed is even simpler.Our numerical experiments have shown that the sweeping method iseasily implementable and is e�cient for a large class of problems. Furtherwork will focus on the feasibility of using parallelism to handle large scaleproblems on the larger supercomputers.2

2 Problem De�nition for Five-Point StencilsThe objects of our study are matrices of dimension ny�nx. Typically, sucha matrix arises from discretizing a partial di�erential equation. A matrixz may represent the function values of the dependent variable at the gridpoints of a rectangular domain. Another matrix, p, may represent givenpotential values at the same grid points. Thus, we sometimes refer to an el-ement (more precisely, the location of the element) of p or of z as a point. Toavoid long expressions, we shall use, whenever there is no risk of confusion,the same symbol p to denote a generic element p(i; j) of the matrix. Pointsin the �rst and last rows or columns are called boundary points, while therest are called interior points.Each interior point has four neighbors, p , p!, p#, and p", understoodin the usual sense. For boundary points, the interpretation of some (two ifit is a corner point and one otherwise) of the neighbors is dictated by theboundary conditions of the original partial di�erential equation. In mostof our experiments, we de�ne the left-hand neighbor of a point in the �rstcolumn to be the last point in the same row, the right-hand neighbor ofa point in the last columns to be the �rst point in the same row, and soon. In other words, the relationship of neighborhood is continued across aboundary by wrapping around to the opposite boundary. As explained in [3],the periodic Ginzburg-Landau model that Du, Gunzburger, and Petersondescribed in [2] leads to a di�erent de�nition for the lower neighbor of apoint on the �rst row (and the upper neighbor of a point on the last row).A �ve-point stencil is a linear combination between each point and itsfour neighbors: S[p] = Cp+ Lp +Rp! +Dp# + Up"; (2:1)where C, L, D, and U are given matrices of dimension ny � nx. A nonho-mogeneous stencil equation is S[z] = b; (2:2)where b is a given ny�nx matrix. It is a linear system of ny�nx equations,each of which is referred to as a point equation. Our objective is to solvefor z, e�ectively and accurately. 3

We make the following assumptions:1. All elements in L (D) not in the �rst column (row) and all elementsin R (U) not in the last column (row) are nonzero.2. The linear operator representing the �ve-point stencil is nonsingular.Indeed, in most cases of application, the operator is Hermitian andstrictly positive or negative de�nite.If the �rst column of L and the last column of R are both zero, we callthe stencil a Dirichlet stencil. In that case, boundary points on the left haveno e�ect on boundary points on the right and vice versa. We can, therefore,consider that points on the left boundary have no left neighbors and pointson the right boundary have no right neighbors. Alternatively, we can con-sider that points on the left boundary have imaginary right neighbors thatassume zero values. It is according to this second interpretation that we usethe term Dirichlet. Note, however, that other types of separated boundaryconditions on the partial di�erential equation, such as the Neumann andRobin types, also lead to Dirichlet stencils.Test ProblemsProblem I. The classical Dirichlet problem for the two-dimensional Pois-son equation �u = f (2:3)on a rectangular domain, upon discretization over a uniform grid, givesthe usual �ve-point stencil with coe�cients f�4; 1; 1; 1; 1g except at theboundary, where one or two of the appropriate coe�cients becomes zero.More speci�cally, we pick for our �rst test problemC = �4; D = 1; U = 1; (2:4)L(:; 1) = 0; L(:; 2 : nx) = 1; (2:5)R(:; nx) = 0; R(:; 1 : nx � 1) = 1: (2:6)For all our test problems, we take b = 1: (2:7)4

Problem II. The generalized Helmholtz equationr(�(x)ru)� �u = f; � > 0; (2:8)gives rise to a stencil with nonconstant coe�cients, whenever �(x) is not aconstant. We simulate this class of problem by perturbing the matrix C inProblem I. For nx = ny = 16, we takeC(i; j) = �4� j � 116 : (2:9)The other coe�cients remain the same.Problem III. To get a non-Dirichlet test problem, we take the stencil ofProblem II and change the �rst column of L and the last column of R toones.Problem IV. For a discussion of the derivation of the discrete Ginzburg-Landau operator that has motivated our study, see [3]. Other numericalapproaches include the recent work of Du, Gunzburger, and Peterson (�niteelement method) [?] and Garner et al. (optimization techniques) [4]. Wechoose for our sample test problem the following parameters:1. The vortex number nv = 2.2. Domain size is Lx � Ly = 3p3 units � 3p3 units.3. Number of grid points are equal for both axes, N = nx = ny.4. The �rst component of the vector potential A is a linear function withA(1; :) = 0 and A(N; :) = g, where g = 2�=Lx = 2:418399.5. The second component of the vector potential B = 0.The coe�cients for the stencil are found by using the formulas given in [3].For reference, we list below those corresponding to N = 40:1. C(i; j) = �42. L = R. Each row is constant, and the elements in each columns areas follows: 5

1.0000 1.0000 + 0.0079 i 0.9999 + 0.0157 i0.9997 + 0.0236 i 0.9995 + 0.0314 i 0.9992 + 0.0393 i0.9989 + 0.0471 i 0.9985 + 0.0550 i 0.9980 + 0.0628 i0.9975 + 0.0706 i 0.9969 + 0.0785 i 0.9963 + 0.0863 i0.9956 + 0.0941 i 0.9948 + 0.1019 i 0.9940 + 0.1097 i0.9931 + 0.1175 i 0.9921 + 0.1253 i 0.9911 + 0.1331 i0.9900 + 0.1409 i 0.9889 + 0.1487 i 0.9877 + 0.1564 i0.9864 + 0.1642 i 0.9851 + 0.1719 i 0.9837 + 0.1797 i0.9823 + 0.1874 i 0.9808 + 0.1951 i 0.9792 + 0.2028 i0.9776 + 0.2105 i 0.9759 + 0.2181 i 0.9742 + 0.2258 i0.9724 + 0.2334 i 0.9705 + 0.2411 i 0.9686 + 0.2487 i0.9666 + 0.2563 i 0.9646 + 0.2639 i 0.9625 + 0.2714 i0.9603 + 0.2790 i 0.9581 + 0.2865 i 0.9558 + 0.2940 i0.9535 + 0.3015 iThis list gives L(1; j), L(2; j), and L(3; j) in the �rst row; L(4; j),L(5; j), L(6; j) in the second row; an so on.3. D(i; j) = 1 for all i > 1; j � 1, and the �rst row is given by thefollowing:1.0000 0.9511 + 0.3090 i 0.8090 + 0.5878 i0.5878 + 0.8090 i 0.3090 + 0.9511 i 0.0000 + 1.0000 i-0.3090 + 0.9511 i -0.5878 + 0.8090 i -0.8090 + 0.5878 i-0.9511 + 0.3090 i -1.0000 + 0.0000 i -0.9511 - 0.3090 i-0.8090 - 0.5878 i -0.5878 - 0.8090 i -0.3090 - 0.9511 i-0.0000 - 1.0000 i 0.3090 - 0.9511 i 0.5878 - 0.8090 i0.8090 - 0.5878 i 0.9511 - 0.3090 i 1.0000 - 0.0000 i0.9511 + 0.3090 i 0.8090 + 0.5878 i 0.5878 + 0.8090 i0.3090 + 0.9511 i 0.0000 + 1.0000 i -0.3090 + 0.9511 i-0.5878 + 0.8090 i -0.8090 + 0.5878 i -0.9511 + 0.3090 i-1.0000 + 0.0000 i -0.9511 - 0.3090 i -0.8090 - 0.5878 i-0.5878 - 0.8090 i -0.3090 - 0.9511 i -0.0000 - 1.0000 i0.3090 - 0.9511 i 0.5878 - 0.8090 i 0.8090 - 0.5878 i0.9511 - 0.3090 i4. U(i; j) = 1 for all i < N; j � 1, and the last row is the conjugate ofthe �rst row of D. 6

3 MATLAB Environment and Some Basic Func-tionsWe used for our experiments the Beta 3 Version of MATLAB 4. This is cho-sen over the previous release MATLAB 3.5 because of its better performanceand enhanced graphics capabilities. Although the new graphics features arenot involved in the part of the project we are reporting here, they are usedin our overall study of the Ginzburg-Landau equations.The coe�cients C;L;R;D, and U for the various problems are storedin di�erent data �les to be loaded either via the startup.m �le or via theload command. For those experiments described in Sections 4 and 5, wehave only one set of coe�cients to deal with each time. It is convenient todeclare these coe�cients as global variables, so that we do not have to passthem as arguments to function subroutines.The declaration of global variables inside a function is a new feature ofMATLAB 4. In previous versions, a global variable had to be declared atthe highest interactive level. Thus, all function calls treated that variableas global. A lurking danger was that a user could unknowingly invoke somefunction that contained a variable with the same name, but was meant to bea local variable. The new rule in MATLAB 4 is that unless the variable isalso declared to be global inside a function, the external declaration has noe�ect. We, however, prefer that the requirement for an external declarationbe eliminated, since each function already has its own. Perhaps the purposeof having this requirement is to allow functions to share semi-global variablesamong themselves, but not with the workspace. We believe that this is adangerous practice (a user may have forgotten that he has already used aglobal variable with the same name in a function he de�ned months ago) andshould be discouraged. In principle, a function should share a global variablewith another function through a common global variable in the workspace.Furthermore, functions having global variables should be special-purposefunctions used only for a special project.For the partial sweeping algorithm discussed in Section 6, the situationis di�erent. It is no longer useful to declare the original coe�cients as globalvariables, since we work with more than one sets of submatrices insteadof the original matrices. All the functions described below will need to berewritten to put the coe�cients back into the input argument list.7

3.1 S.m | stencil operator% y = S(p) To compute the image of p under the% stencil S%% C L R D U should exist in workspacefunction y=S(p)global C L R D U[ny nx]=size(p);y = C.*p + L.*p(:,[nx,1:nx-1]) + R.*p(:,[2:nx,1]) + ...D.*p([ny,1:ny-1],:) + U.*p([2:ny,1],:);The main use of this function is to determine how accurately an approxi-mate solution za satis�es the given stencil equation. One can use the residuebb = b - S(za)to obtain a correction zc to the approximate solution, simply by solving theresidue equation S(zc) = bb.The following is the modi�ed version that includes the coe�cients asinput arguments (needed for the partial sweeping algorithm).function y=S(C,L,R,D,U,p)[ny nx]=size(p);y = C.*p + L.*p(:,[nx,1:nx-1]) + R.*p(:,[2:nx,1]) + ...D.*p([ny,1:ny-1],:) + U.*p([2:ny,1],:);Since modi�cations for the other functions in the rest of the section aresimilar and straightforward, they are omitted.8

3.2 swp.m | basic column sweeping operator% y = swp(x,b,n1,n2) Basic sweeping operation for% Sx = b from column n1 to n2% If n2==0, sweep --> 1 column% < <--function y=swp(x,b,n1,n2)global C L R D U[ny nx]=size(x);y=x;if n1<=n2if n2==0, n2=n1; endfor ii=n1-1:n2-1if ii==1 yL=y(:,nx); else yL=y(:,ii-1); endy(:,ii+1) = (b(:,ii)-(C(:,ii).*y(:,ii)+L(:,ii).*yL+ ...D(:,ii).*y([ny,1:ny-1],ii)+ ...U(:,ii).*y([2:ny,1],ii)))./R(:,ii);endelseif n2<0, n2=n1; endfor ii=n1+1:-1:n2+1if ii==nx yR=y(:,1); else yR=y(:,ii+1); endy(:,ii-1) = (b(:,ii)-(C(:,ii).*y(:,ii)+R(:,ii).*yR+ ...D(:,ii).*y([ny,1:ny-1],ii)+ ...U(:,ii).*y([2:ny,1],ii))).lemma(:,ii);endendWe start with a matrix x that does not satisfy the stencil equationS[z]=b. The idea of the sweeping method is to alter the columns (rows)of x to satisfy as many of the point equations as possible. For columnsweeping, there are two directions to choose from: towards the right or to-wards the left. In the former case, a column, say, column j, is altered sothat all point equations pertaining to the column j � 1 are satis�ed. Whensweeping to the left, equations pertaining to the column j + 1 are used.The function swp sweeps the matrix x by altering columns from n1 ton2, inclusively, using b as the righthand side of the stencil. The direction9

of sweeping is determined by the relative sizes of the arguments n1 and n2,except in the case when only one column is to be swept; then n1 is equal ton2, and the default direction is to the right. For the case of sweeping onlyone column, we provide an alternative way to specify the direction: to theleft if n2 = 0 and to the right if n2<0.Note that in the calculation of a new column in each sweeping step, theelements can be computed in parallel.We point out a pitfall of numerical experimentation. Rounding errors, ifnot carefully controlled, can yield results contradictory to theoretical predic-tions. Sweeping is one of those procedures that has to be closely scrutinized.Suppose that one starts with a matrix x and sweeps it from column n1 (to-wards the right) to column n2 to get a new matrix y. If one now sweeps yfrom column n2-2 back to n1, one should, theoretically, make no changes tothe columns of y. However, when we experimented with the simple Lapla-cian stencil of size 40� 40, and x(i,j)=0 except x(1,1)=1, we found thatthe two matrices di�er by 4:2� 1058. In fact, the magnitude of the elementsin the last column of x is on the order of 1029, an indication of the rate ofgrowth by sweeping through 40 columns. Sweeping back from the right willmagnify any error by an equally large factor.Our next step is to build a more user-friendly version of the basic sweep-ing operation. The input format of a MATLAB function is rather
exible.The function can be called with fewer arguments than speci�ed in its de�ni-tion, and the data types of the arguments are not rigidly �xed by declarationsin the subroutine, as in Fortran or C subroutines. This
exibility allows oneto design functions that can assume default values whenever certain argu-ments are omitted from the input list. Unfortunately, this
exibility canalso be a source of extremely subtle bugs, if used carelessly.
10

3.3 sw0 | a more
exible sweeping subroutine% y = sw0(x,n1,n2) sweep matrix x% sw0(x,b,n1,n2) from column n1 to n2 and% sw0(x,n1,n2,m1,m2) from m1 to m2% sw0(x,b,n1,n2,m1,m2)%% b rhs, default 0 if omitted% n1 <= (>) n2 sweep to the right (left)% n2 == (<) 0 sweep 1 column right (left)function y=sw0(x,b,n1,n2,m1,m2)global C L R D Uif nargin==3 if max(size(b))==1y = swp(x,0*x,b,n1);elsey = swp(x,b,n1,0);endelseif nargin==4 y = swp(x,b,n1,n2);elseif nargin==5 y = sw0(x,0*x,b,n1,n2,m1);else z = swp(x,b,n1,n2);y = swp(z,b,m1,m2);endMany of the sweeping operations used in the algorithms involve simulta-neous sweeping, mostly in two opposite directions on two separate portionsof the same matrix. Also, in some cases, the sweepings are done on thehomogeneous stencil, corresponding to taking the righthand side b=0. Thefunction sw0 is designed to cover these two situations in the most user-friendly way. If b is omitted in the argument list, the homogeneous stencilis assumed. If two column ranges are speci�ed, then two sweepings will bedone; otherwise, only one sweeping is needed. Obviously, sw0 is based onswp.In the MATLAB implementation, when two sweepings are requested,they are performed in serial. They should be performed simultaneously ona parallel computer. 11

3.4 err.m | stencil error for one or two columns% e = err(x,b,n1,n2) compute error Sx - b for two% err(x,n1) or one column; b = 0 (default)% err(x,n1,n2)function e=err(x,b,n1,n2)global C L R D Uif nargin==2n=b; b=0*x;elseif nargin==3if max(size(b))==1, n=[b n1]; b=0*x; else n=n1; endelsen=[n1 n2];end[ny nx]=size(x);e=[];for ii=nif ii==1, xL=x(:,nx); else xL=x(:,ii-1); endif ii==nx, xR=x(:,1); else xR=x(:,ii+1); ende1=C(:,ii).*x(:,ii)+L(:,ii).*xL+R(:,ii).*xR+ ...D(:,ii).*x([ny,1:ny-1],ii)+ ...U(:,ii).*x([2:ny,1],ii)-b(:,ii);e = [e; e1];endAfter a sweeping operation on a matrix, some point equations, typicallyin one or two columns, still may not be satis�ed. The function err computesthe error Sx-b. The answer is given as a column vector of length ny or 2nyaccording to whether one or two columns are involved. The function assumesa default homogeneous stencil if the input argument b is omitted.
12

4 Two-Direction SweepingWe skip the simple one-direction sweeping, which works well in most casesfor N up to about 12.Program: Two-Direction Sweeping for Solving S[z] = bCompute the rectifying matrix RR :for i from 1 to nyx(i,nx/2) = 1, x = 0 otherwisesweep x with the homogeneous stencilerror vector from �rst and last columnis added to RRendrepeat using x(i,nx/2+1) = 1Construct a test solution y :y = 0sweep y outward from the two columns in thecentercompute error vector er from �rst and lastcolumnsConstruct the solution z :� RR n er gives the two center columns of zsweep outward to compute zWe shall use the name rectifying matrix to refer to both the matrix RRand its inverse. The same holds for other rectifying matrices introducedlater. The context will ensure that no confusion arises.We found that sweeping outward was more suitable for general Dirich-let stencils. The main reason is that the solution of a Dirichlet stencil ismore sensitive to adjustments made in the �rst and last columns than thosemade in the central columns. The rectifying matrix for computing the cen-tral columns is, therefore, better conditioned than that for computing theboundary columns. As will be explained in Section 6, a modi�cation iscalled for if the sweeping is to be incorporated as a subroutine within apartial sweeping algorithm. 13

Our implementation splits the algorithm into twoM-�les, the �rst to �ndRR and the second to solve for z. The former is the more time-consumingpart of the the algorithm. Once we have RR computed, only the secondM-�le is needed to solve di�erent equations for the same stencil.% arr.m%% Routine to compute the rectifying matrix RR%% Input (from workspace) :-%% C L R D U%% Output :-%% RR RRI x (last sweeping matrix)RR=[];for j=1:nyx=zeros(ny,nx); x(j,1)=1;x=sw0(x,2,nx/2);RR = [RR err(x,nx/2,nx/2+1)];endfor j=1:nyx=zeros(ny,nx); x(j,nx)=1;x=sw0(x,nx-1,nx/2+1);RR = [RR err(x,nx/2,nx/2+1)];endRRI = inv(RR);This subroutine consists simply of two loops to �nd the 2ny columnsof RR. Notice that each sweeping cycle of x is performed completely inde-pendently of the others. Parallel computation is, therefore, the correct routeto go.The inverse of RR is computed once and for all if it is known before-hand that there is more than one equation of the same stencil to be solved.Otherwise, the command rr = - RR \ er;14

can be used in the second M-�le. This command computes rr by usingGaussian elimination.% asw.m%% Simple two-sided sweeping for solving Sz = b%% Using module subroutines sw0 and err% and previously computed RR%% Input (defined in workspace):-%% b C L R D U% RR computed using arr.m%% Output:% y trial solution with y(:,1)=y(:,N)=0% er errors in the 2 central columns in y% rr the 2 central columns in z% z solution% Initial sweeping to get trial solution y and error ery=zeros(ny,nx);y=sw0(y,b,nm-1,1,nm+2,nx);er=err(y,b,1,nx);% Back sweeping to compute solution zrr=-RRI*er; % OR rr=-RR\er;z=zeros(ny,nx);z(:,nm)=rr(1:ny); z(:,nm+1)=rr(ny+1:2*ny);z=sw0(z,b,nm-1,1,nm+2,nx);Theoretically, these two subroutines are all that is needed to compute thesolution of the stencil equation. A solution-re�ning routine to be describedbelow can be used if the accuracy of the computed answer is not satisfactory.15

Here are the results from some typical tests:Problem Grid Size max z max fjb� Szjg Flops 1 Flops 2I 16� 16 36:0 1:4922� 10�8 92817 32783II 16� 16 3:9540 1:5320� 10�9 92817 32603III 16� 16 4:7990 1:9568� 10�9 92817 32575IV 16� 16 3:7697 5:6694� 10�10 360785 139211I 40� 40 213:35 142:9461 1424361 408453IV 40� 40 69:37 37:7422 5737721 1689627If one examines the full residue matrix rather than just its maximum, oneshould be more impressed because the errors are concentrated only on thetwo boundary columns; the residues for the interior columns are practicallynil, a logical consequence of the sweeping operation. The average residue, orresidue in the mean, is therefore much smaller than mres = max fjb� Szjg.The last two columns in the table give the number of
oating-pointoperations for the two subroutines, respectively. The signi�cantly greaternumber of
ops needed for Problem IV is due to the presence of complexnumber operations. The number of
ops executed by a subroutine, however,is not proportional to the elapse time, which can be determined by using theMATLAB commands tic and toc. Even thought arr requires only aboutthree times as many
ops as asw, the execution time for arr is between 15to 40 times as great as that of asw, depending on the current load of themachine. The subroutine asw ran extremely fast for small nx and ny.Accuracy falls o� as the size of the grid increases, as evidenced by thelast two rows of the table. Errors accrue in the inversion of the matrix RR,which has very large entries, and in the unstable sweeping operation. Onemay be tempted to conclude that the solutions for the last two problemsare even worse than the zero matrix, which gives a maximum residue of 1.Nevertheless, one must bear in mind that, for the zero matrix, there is aresidue of 1 at every grid point, whereas the seemingly appalling residue ofz appears only at the boundary points.16

The solution z can be re�ned by using another subroutine that solvesthe residue equation. In Section 7, we shall see that the same technique canbe used to obtain the inversion of nearby stencils.% Subroutine to refine a computed solution to Sz = b%% * If this is the first time the subroutine is called% * after z is computed by using asw.m, copy b and% * z to the variables bb and zz first by using% *% * bb = b; zz = a;% *% * If more than one iteration is needed, run the subroutine% * in a "for" statement%%% Input (defined in workspace):-%% bb zz C L R D U RR (computed using arr.m)%% Output:% b residue% z solution of residue equation% zz improved solutionb=bb-S(zz);aswzz=zz+z;Applying this re�nement subroutine just once to the problem in the �rstrow of the previous table, we obtained an improved solution with mres =2:8422� 10�14. Examining the solution z shows that accuracy is really upto the last digit allowable by machine accuracy. Improving the solutionto the problem in the second row gave mres = 3:9968 � 10�15. In bothcases, more applications of the re�nement subroutine do not lead to furtherimprovement, as the limit of the machine accuracy is already reached.For the Ginzburg-Landau operator with N = 40, one application of there�nement subroutine gave an improved solution with mres = 1:54220 �10�8. A second iteration gave mres = 1:24130� 10�12.17

It is easy to incorporate the re�nement subroutine into the second sub-routine in the usual way so that the solution will be automatically re�nedeither until a speci�ed accuracy is attained or until no further improvementsare possible.If di�erent equations are to be solved for the same stencil, it is worthwhileto perform the re�nement on the rectifying matrix RRI, especially in the casewhen many re�nement steps are needed, because the process can be speededup if we use the newly improved RRI in the next iterative step of re�nement.In theory, each column in RRI is the two center columns of the solutionto the stencil equation in which the righthand side is zero at all but oneappropriate point in the two boundary columns, at which the value is 1. Byre�ning the solution to this system, we can obtain a re�ned column for RRI.The columns can be re�ned in parallel.

18

5 Two-Stage Sweeping for Dirichlet StencilsThe re�nement procedure described in Section 4 cannot take care of round-ing errors arising from the rather unstable sweeping process; an error cangrow exponentially as the number of columns swept increases. A multistagealgorithm breaks up the sweeping into stages, each over a small range ofcolumns. The method is still a direct one, as opposed to an iterative schemelike the partial sweeping of the next section. There is more than one way toimplement a multistage algorithm. We describe only one of the approacheswe have tested.We divide the nx columns into four groups: (1) columns 1 to n1-1, (2)n1 to nm, (3) nm+1 to n2, and (4) n2+1 to nx. In general, the four groupsneed not be equal in size. When nx is a multiple of 4, division into fourequal groups corresponds to choosing n1 = nx/4 + 1, nm = nx/2, and n2= 3nx/4. For example, when nx = 40, we use n1 =11, nm = 20, and n2 =30. We shall make use of columns n1 and n2 as initial columns in the �nalstep of backward sweeping. The rectifying matrix BRR is, therefore, de�nedto be that relating the values of the solution z in these two initial columnsto the errors in the two center columns.Since the two initial columns are not adjacent to each other, we cannotreally start backward sweeping right away; we must have a means to deter-mine columns n1-1 and n2+1. The matrices BI1 and BI2 computed in the�rst part of the algorithm are used for that purpose. They are found bymatching the errors obtained by sweeping the �rst (last) quarter of the gridwith n1-1 and n1 (n2+1 and n2) as initial columns.The rectifying matrix BRR is then computed by sweeping the second andthird quarters of the grid, inwards from columns n1 and n2. Note that inthis implementation of the algorithm, the second stage of sweeping dependson the outcome, namely, the matrices BI1 and BI2, from the �rst stage,and hence the two stages must be performed in serial. A modi�cation canbe made to carry out the second stage in parallel without prior knowledgeof BI1 and BI2. The tradeo� is the inversion of a larger matrix of dimen-sion 2nx� 2nx in the second stage. If there are more stages and if parallelprocessing is available, substantial speedup can be achieved. The implemen-tation we give here is analogous to the method of marching, in the language19

of shooting methods, and the modi�cation we alluded to is analogous tomultiple shooting. For references to these shooting techniques, see [1].Program: Two-Stage Sweeping for Solving S[z] = bCompute the �rst-stage rectifying matrices BRR1 andBRR2 and the continuation matrices BI1 BI2 :BI1 and BI2 give columns n1�1 and n2+1when columns n1 and n2 are knownCompute the second-stage rectifying matrix BRR :this matrix relates the errors in the twocenter columns to the choice of initialsweeping values in columns n1 and n2Construct a �rst-stage test solution y that is error freein the �rst and last quarters :y = 0sweep outward from columns n1 and n2compute errors from �rst and last columnsuse er, BRR1, and BRR2 to determine columnsn1 and n2 of yConstruct the solution z :sweep second and third quarterscompute errors in the two center columnsuse BRR to determine columns n1 and n2use BI1 and BI2 to determine columnsn1�1 and n2+1sweep to compute zThe construction of the solution z is also carried out in two stages. Inthe �rst stage, we use the matrices BRR1 and BRR2 to smooth out as much aspossible the errors in the �rst and last quarters, rather than sweeping themand thus magnifying them all the way to the center columns.As before, we split up the program into two subroutines; the �rst yieldsthe rectifying matrices and the second the solution. If required, a thirdsubroutine for re�ning the solution can be added just as in the previoussection. 20

% brr.m%% Routine to compute the rectifying matrices BRR BI1 BI2% for the Two-stage Two-way Sweeping%% Input (from workspace) :-%% C L R D U nx ny n1 n2 nm%% Output :-%% BRRI BRR BRR1 BRR2 BI1 BI2% bi1 bi2 x (last sweeping matrix)BRR1=[]; BRR2=[]; bi1=[]; bi2=[];for j=1:nyx=zeros(ny,nx); x(j,n1-1)=1; x(j,n2+1)=1;x=sw0(x,n1-2,1,n2+2,nx);BRR1=[BRR1 err(x,1)];BRR2=[BRR2 err(x,nx)];x=zeros(ny,nx); x(j,n1)=1; x(j,n2)=1;x=sw0(x,n1-2,1,n2+2,nx);bi1=[bi1 err(x,1)];bi2=[bi2 err(x,nx)];endBI1 = -BRR1\bi1;BI2 = -BRR2\bi2;BRR=[];for j=1:nyx=zeros(ny,nx); x(j,n1)=1; x(:,n1-1)=BI1(:,j);x=sw0(x,n1+1,nm);BRR = [BRR err(x,nm,nm+1)];endfor j=1:nyx=zeros(ny,nx); x(j,n2)=1; x(:,n2+1)=BI2(:,j);x=sw0(x,n2-1,nm+1);BRR = [BRR err(x,nm,nm+1)];BRRI = inv(BRR);end 21

The second subroutine solves the stencil for a given righthand side b:% Two-stage Two-sided sweeping for solving Sz = b%% Using module subroutines sw0 and err% and previously computed BRRI BRR BI1 BI2%% Input (defined in workspace):-%% b C L R D U% BRR BRR1 BRR2 BI1 BI2 computed using brr.m%% Output:% y y2 trial solutions% er1 er2 er sweeping errors% b2 residue% rr correction for solution% z solution% First-stage sweeping to compute trial solution y% in 1st and 4th quartersy=zeros(ny,nx);y=sw0(y,b,n1-2,1,n2+2,nx);er1=err(y,b,1); er2=err(y,b,nx);y(:,n1-1)= -BRR1\er1;y(:,n2+1)= -BRR2\er2;y=sw0(y,b,n1-2,1,n2+2,nx);% Compute residueb2=b-S(y);% Second-stage sweeping to get trial solution y2% in 2nd and 3nd quartersy2=zeros(ny,nx);y2=sw0(y2,b2,n1+1,nm,n2-1,nm+1);er=err(y2,b2,nx/2,nx/2+1); % to be continued ...22

% ... continue% Back sweeping to compute solution zrr=-BRR\er;z=zeros(ny,nx);z(:,n1)=rr(1:ny); z(:,n2)=rr(ny+1:2*ny);z(:,n1-1)=BI1*rr(1:ny); z(:,n2+1)=BI2*rr(ny+1:2*ny);z=sw0(z,b2,n1-2,1,n2+2,nx);% Combine with first trial solution yz = y + sw0(z,b2,n1+1,nm,n2-1,nm+1);Test results are recorded in the following table.Problem Grid Size max z max fjb� Szjg Flops 1 Flops 2I 16� 16 36:0 7:3825� 10�12 127920 45591II 16� 16 3:9540 1:0534� 10�12 127920 45489IV* 16� 16 3:5734 4:1064� 10�13 546016 190469I 40� 40 210:00 2:7022� 10�6 1905064 543383IV* 40� 40 69:43 6:6991� 10�7 8363336 2256225II 60� 60 8:9116 7:4750� 10�4 6361240 1702789* Since our two-stage algorithm applies only to Dirichlet stencils, ProblemIV used in this testing has been modi�ed accordingly.As will be explained in Section 6, if this two-stage subroutine is used ina partial sweeping algorithm that employs two overlapping domain decom-positions, the �rst-stage sweeping to �nd y can be omitted.23

6 Partial SweepingPartial sweeping is an alternative to multistage sweeping for very large gridsizes. It is an iterative algorithm that is highly parallelizable. It is, how-ever, restricted to positive or negative de�nite (or, more generally, accretive)stencils that have de�nite substencils. Fortunately, most stencils arising inpractice are of this type.We use a Problem II stencil as an example:nx = 10; ny = 80; (6:1)C(i; j) = �4� j � 120 ; (6:2)L = R = D = U = 1: (6:3)We use two di�erent domain decompositions, each having four subdomains:(1) columns 1 { 20, 21 { 40, 41 { 60, and 61 { 80.(2) columns 11 { 30, 31 { 50, 51 { 70, and 71 { 80 plus 1 { 10.We are no longer dealing with just one set of coe�cient matrices, butrather with various sets of submatrices of the coe�cient matrices. For thisreason, the convenience provided by declaring the coe�cient matrices asglobal variables is not available anymore. Thus, all functions described inSection 2 must be rede�ned, including the coe�cient matrices as input ar-guments. Furthermore, it is more appropriate to rewrite the sweeping sub-routine M-�les (either those given in Section 3 or in Section 4) as functions,to enable them to be applied to di�erent subdomains. The task involvesnothing more than a careful record keeping of which variables are needed asinput and which variables will be generated as output.In the following pseudo-code, we add a \subscript" k (in principle, k runsfrom 1 to 8) to various variables to indicate that they are associated with thekth subdomain. For instance, the coe�cient matrices of the subdomains aredenoted by Ck, Lk, etc. Incidentally, MATLAB does not have a convenientway to index matrices, since arrays of dimensions more than two are notsupported. One can still simulate (in a slightly awkward way) an array ofmatrices by concatenating the index (�rst turned into a string by using thecommand num2str) to the matrix name and then eval the entire string.24

Program: Partial Sweeping for Solving S[z] = bGenerate the 8 sets of partial coe�cient matrices :extract the appropriate submatricesequate the �rst column of Lk and thelast column of Rk to zeroCompute the rectifying matrices RRIk :for j from 1 to 8RRIk = arr(Ck,Lk,Rk,Dk,Uk)endRepeat until bb = max(S[z] - b) < desired accuracy :sweep subdomains 1, 2, 3, and 4 (odd cycles)sweep subdomains 5, 6, 7, and 8 (even cycles)by using z = asw(bb,Ck,Lk,Rk,Dk,Uk,RRIk)on the reduced residue equationEnd repeatResults for the test problem are recorded below. The correct algorithmsweeps the stencil using two domain decompositions alternatively, in suc-cessive cycles. The maximum residue after each cycle is given in the �rstcolumn. If only one decomposition is used throughout all the cycles, we stillgot convergence, but the rate was slow. These results are listed in the othertwo columns for the sake of comparison.cycles mresalternate only (1) only (2)1 2:3786 2:3786 1:59722 0:0029 0:4726 0:96383 3:6301�10�5 0:3453 0:60724 2:9451�10�8 0:1064 0:37435 3:2348�10�10 0:0629 0:23276 2:6557�10�13 0:0284 0:144025

In addition, we obtainedmax(z) = 4:7525;
ops1 = 365528;
ops2 = 54388:The �rst
op count,
ops1, is for the set-up part of the program | to�nd the submatrices and the corresponding rectifying matrices. The second
op count is for each cycle of partial sweeping.A careful scrutiny of the algorithm reveals that the two-direction sweep-ing implementation given by arr and asw is not best suited for partial sweep-ing, even though it is good enough for its original purpose. In all the cyclesbeyond the �rst one, the nonhomogeneous part of each residue equation has\support" only on the two center columns of each subdomain. The subrou-tine asw sweeps these errors towards the boundary before determining theinitial columns for the correct solution. A better way is to �nd a di�er-ent rectifying matrix that gives the initial columns directly from the errorson the two center columns | in a way analogous to the Green's functionused in solving elliptic boundary value problems. Not only is the work forsweeping the errors saved, but any rounding error that may occur duringthe sweeping can be avoided. We omit the simple modi�cations needed.Similarly, if a two-stage sweeping subroutine is used for the partial sweep-ing algorithm, except in the �rst cycle, the �rst-stage sweeping used to �ndy is not needed.
26

7 Perturbed Stencil and the Method of Contin-uationIn the numerical solution of the Ginzburg-Landau equations arising fromsuperconductivity, Newton's method is applied to the set of nonlinear equa-tions. The stencil equation given by the discrete Ginzburg-Landau operatorthat constitutes our test Problem IV is only one portion of the equations tobe solved in one of the iterative Newton steps. As the computational pro-cedure progresses, the Ginzburg-Landau stencil changes. Variable stencilsalso arise in time-dependent systems.If changes in the stencil coe�cients are gradual, we can �nd the inverseof a new stencil from the known inverse of the previous stencil quickly byusing the re�nement subroutine described in Section 4. Let S be a stencilfor which we have determined an accurate rectifying matrix RRI . We aregiven a new stencil T such that, under some appropriate operator norm,kS�1�k = kS�1(S � T)k is small. The new stencil equation to be solved isT [z] = (S + �)[z] = b: (7:1)The re�nement process is related to the �xed-point iterative schemezn = S�1(b��[zn�1]): (7:2)Alternatively, we can regardRRI as an approximate rectifying matrix forthe new stencil, and use the technique discussed after the re�ning subroutinein Section 4 to improve RRI to give an accurate rectifying matrix for T .Even if the new stencil is not su�ciently close to S, the technique ofcontinuation can sometimes be used. One simply connects S and T by ahomotopy T (t) = S+ t(T �S), 0 < t < 1, and computes the inverse of T (ti)for a suitably chosen sequence of numbers ti 2 (0; 1) with the �nal choicetm = 1.
27

8 Banded MatricesOne attractive feature of the simple one-direction sweeping algorithm forthe Dirichlet stencil is that the bulk of the work is in computing the in-verse of one single matrix RR of dimension ny � ny, instead of the inverseof a sparse matrix of dimension (nx)(ny) � (nx)(ny), The more sophisti-cated two-direction sweeping for a general stencil requires the inversion of a2ny � 2ny matrix | the amount of work is about eight times greater butstill manageable. Using stages introduces substantially more work. Finally,partial sweeping that usesm subdomains in the form of vertical strips meansthe inversion of m matrices each of dimension ny � ny. In view of the in-crease in work as sophistication and grid size mount, an obvious question iswhether there is still advantage over conventional methods. A satisfactoryanswer is possible only after further investigation.Fortunately, if the width of a subdomain is small relative to its length,the corresponding rectifying matrix to be inverted turns out to be banded.It is well known that banded matrices need substantially less e�ort to invertthan full matrices. For a recent reference, see [5] by S. Wright.Many banded matrices can be inverted by the method of sweeping |in particular, those for which none of the elements in the band vanishes. Adiscussion can be found in [3]. When the banded matrix is large, instabilityof the sweeping will be a problem, and the technique of multi-stage or partialsweeping can be applied as in the case of solving stencil equations. We omitthe details.
28

Acknowledgments I thank my colleagues Paul Plassmann and SteveWright for many useful discussions and for sharing their recent work [4] andin making available their numerical codes.References[1] Ascher, U. M., Mattheij, R. M. M., and Russell, R. D.,Numerical So-lutions of Boundary Value Problems for Ordinary Di�erentialEquations, Prentice-Hall, Englewood Cli�s, New Jersey, 1991.[2] Du, Q., Gunzburger, M., and Peterson, J., Modeling and analysis of aperiodic Ginzburg-Landau model for type-II superconductors, preprint,1992.[3] Kwong, Man Kam, Sweeping algorithms for inverting the discreteGinzburg-Landau operator, Mathematics and Computer Science Divi-sion Preprint MCS-P307-0492, Argonne National Laboratory, Argonne,Ill., December 1991.[4] Garner, J., Spanbauer, M., Benedek, R., Strandburg, K., Wright, S.,and Plassmann, P., Critical �elds of Josephson-coupled superconduct-ing multilayers, Mathematics and Computer Science Division PreprintMCS-P281-1291, Argonne National Laboratory, Argonne, Ill., Decem-ber 1991.[5] Wright, S., A parallel algorithm for banded linear systems, SIAM J.Scienti�c Statistical Computing 12 (1991), 824{842.
29

